Site hosted by Angelfire.com: Build your free website today!
My Blog
Thursday, 15 January 2009
wire

Ethernet hub

From Wikipedia, the free encyclopedia

Jump to: navigation, search
4-port Ethernet hub

A network hub or repeater hub is a device for connecting multiple twisted pair or fiber optic Ethernet devices together, making them act as a single network segment. Hubs work at the physical layer (layer 1) of the OSI model. The device is thus a form of multiport repeater. Repeater hubs also participate in collision detection, forwarding a jam signal to all ports if it detects a collision.


Hubs also often come with a BNC and/or AUI connector to allow connection to legacy 10BASE2 or 10BASE5 network segments. The availability of low-priced network switches has largely rendered hubs obsolete but they are still seen in older installations and more specialized applications.

Technical information

A network hub is a fairly un-sophisticated broadcast device. Hubs do not manage any of the traffic that comes through them, and any packet entering any port is broadcast out on every other port (other than the port of entry). Since every packet is being sent out through every other port, packet collisions result--which greatly impedes the smooth flow of traffic.

The need for hosts to be able to detect collisions limits the number of hubs and the total size of the network. For 10 Mbit/s networks, up to 5 segments (4 hubs) are allowed between any two end stations. For 100 Mbit/s networks, the limit is reduced to 3 segments (2 hubs) between any two end stations, and even that is only allowed if the hubs are of the low delay variety. Some hubs have special (and generally manufacturer specific) stack ports allowing them to be combined in a way that allows more hubs than simple chaining through Ethernet cables, but even so, a large Fast Ethernet network is likely to require switches to avoid the chaining limits of hubs.

Most hubs detect typical problems, such as excessive collisions on individual ports, and partition the port, disconnecting it from the shared medium. Thus, hub-based Ethernet is generally more robust than coaxial cable-based Ethernet, where a misbehaving device can disable the entire segment. Even if not partitioned automatically, a hub makes troubleshooting easier because status lights can indicate the possible problem source or, as a last resort, devices can be disconnected from a hub one at a time much more easily than a coaxial cable. They also remove the need to troubleshoot faults on a huge cable with multiple taps.

Hubs classify as Layer 1 devices in the OSI model. At the physical layer, hubs can support little in the way of sophisticated networking. Hubs do not read any of the data passing through them and are not aware of their source or destination. Essentially, a hub simply receives incoming packets, possibly amplifies the electrical signal, and broadcasts these packets out to all devices on the network - including the one that originally sent the packet!

Technically speaking, three different types of hubs exist:

1. Passive
2. Active
3. Intelligent

Passive hubs do not amplify the electrical signal of incoming packets before broadcasting them out to the network. Active hubs, on the other hand, do perform this amplification, as does a different type of dedicated network device called a repeater. Some people use the terms concentrator when referring to a passive hub and multiport repeater when referring to an active hub.

Intelligent hubs add extra features to an active hub that are of particular importance to businesses. An intelligent hub typically is stackable (built in such a way that multiple units can be placed one on top of the other to conserve space). It also typically includes remote management capabilities via SNMP and virtual LAN (VLAN) support.

Hubs remain a very popular device for small networks because of their low cost. A good five-port Ethernet hub can be purchased for less than $30 USD.

Uses

Historically, the main reason for purchasing hubs rather than switches was its price. This has largely been eliminated by reductions in the price of switches, but hubs can still be useful in special circumstances:

  • A protocol analyzer connected to a switch does not always receive all the desired packets since the switch separates the ports into different segments. Connecting the protocol analyzer to a hub allows it to see all the traffic on the segment. (Expensive switches can be configured to allow one port to listen in on traffic from another port. This is called port mirroring. However, these cost much more than a hub.)
  • Some computer clusters require each member computer to receive all of the traffic going to the cluster. A hub will do this naturally; using a switch requires implementing special tricks.
  • When a switch is accessible for end users to make connections, for example, in a conference room, an inexperienced or careless user (or saboteur) can bring down the network by connecting two ports together, causing a loop. This can be prevented by using a hub, where a loop will break other users on the hub, but not the rest of the network. (It can also be prevented by buying switches that can detect and deal with loops, for example by implementing the Spanning Tree Protocol.)
  • A cheap hub with a 10BASE2 port is probably the cheapest and easiest way to connect devices that only support 10BASE2 to a modern network (cheap switches don't tend to come with 10BASE2 ports). The same goes for linking in an old thicknet network segment using an AUI port on a hub (individual devices that were intended for thicknet can be linked to modern Ethernet by using an AUI-10BASE-T transceiver).

Posted by www.moreno.com at 2:42 AM EST
Updated: Thursday, 15 January 2009 3:46 AM EST
Post Comment | Permalink | Share This Post

View Latest Entries

« January 2009 »
S M T W T F S
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
Entries by Topic
All topics  «